
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016

1

Manuscript received July 5, 2016
Manuscript revised July 20, 2016

Comparing between different approaches to solve the 0/1
Knapsack problem

Ameen Shaheen† and Azzam Sleit††

University of Jordan Computer Science Department, Amman, Jordan

Summary
Knapsack problem is a surely understood class of optimization
problems, which tries to expand the profit of items in a knapsack
without surpassing its capacity, Knapsack can be solved by
several algorithms such like Greedy, dynamic programming,
Branch & bound etc….
In this paper we will exhibit a relative investigation of the
Greedy, dynamic programming, B&B and Genetic algorithms
regarding of the complexity of time requirements, and the
required programming efforts and compare the total value for
each of them.
Greedy and Genetic algorithms can be used to solve the 0-1
Knapsack problem within a reasonable time complexity. The
worst-case time complexity (Big-O) of both algorithms is O(N).
Nevertheless, these algorithms cannot find the exact solution to
the problem; they are helpful in finding a local optimal result
only. Our main contribution here is to test both algorithms
against well-known benchmark data sets and to measure the
accuracy of the results provided by each algorithm. In other
words, we will compare the best local result produced by the
algorithm against the real exact optimal result.
Key words:
0/1 Knapsack, Algorithm, Greedy algorithm, dynamic
programming.

1. Introduction

The 0-1 Knapsack Problem is vastly studied in importance
of the real world applications that build depend it
discovering the minimum inefficient approach to cut crude
materials seating challenge of speculations and portfolios
seating challenge of benefits for resource supported
securitization, A few years ago the generalization of
knapsack problem has been studied and many algorithms
have been suggested [1]. Advancement Approach for
settling the multi-objective0-1 Knapsack Problem is one
of them, and there is numerous genuine worked papers
established in the writing around 0-1 Knapsack Problem
and about the algorithms for solving them.
The 0-1 KP is extremely well known and it shows up in
the real life worlds with distinctive application. The
solution of the 0-1 KP can be viewed as the result of a
sequence of decisions [2]. 0-1 KP is NP problem
(nondeterministic polynomial time) - complete and it also
speculation of the 0 - 1

Knapsack problem in which numerous Knapsack are
considered.
The KP is a: given an arrangement of items, each with
weight and a value, decide the number of each item to
include in a capacity so that the total weight is little than a
given capacity and the total value must as large as possible
[3].
We have n of items. Each of them has a value Vi and a
weight Wi. The most extreme weight that we can convey
the knapsack is C. The 0 – 1 KP is an uncommon case of
the original KP problem in which each item can't be Sub
separated to fill a holder in which that input part fits. The
0 – 1 KP confines the quantity of each kind of item xj to 0
or 1. Mathematically the 0 – 1 KP can be formulated as:
Maximize∑ 𝐏𝐏𝐏𝐏 𝐗𝐗𝐏𝐏𝒏𝒏

𝒊𝒊=𝟏𝟏 Subject to ∑ 𝐖𝐖𝐏𝐏 𝐗𝐗𝐏𝐏𝒏𝒏
𝒊𝒊=𝟏𝟏 ≤ 𝑪𝑪

Example:
Assume 7 numbers of items arrive as shown in table 1. We
need to choose such items so that it will satisfy our two
goals as follows:

1) Fill it to get the greatest benefit.
2) Knapsack holds a most extreme of 22 pounds. So

the aggregate weight of the chose items not
surpasses our greatest limit.

In this research, a 0/1 KP is presented. As a solution of the
0/1 knapsack problem, greedy algorithm, dynamic
programming algorithm, B&B algorithm, and Genetic
algorithm are applied and evaluated both analytically and
experimentally in terms of time and the total value for
each of them, Moreover, a comparative study of the
greedy ,dynamic programming, branch and bound, and
Genetic algorithms is presented.

Table 1: Knapsack Example
Items 1 2 3 4 5 6 7
Profit 10 8 9 15 7 7.2 5.5

Weight 12 8 6 16 4 5 8

The rest of this paper is organized as follows: in Section 2,
gives a general view of background of knapsack problem,
also presents the previous related work of the 0-1 KP and
the algorithms that are used to solve it. All algorithms
illustrated in Section 3. While in Section 4, analytical
view of algorithm results will be presented. Moreover, the
analysis involves the estimation of several performance
metrics, including: the worst case time complexity. In

http://en.wikipedia.org/wiki/Nondeterministic_algorithm
http://en.wikipedia.org/wiki/Polynomial_time

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 2

Section 5, a comparison of the experimental results
between the four algorithms will be shown. Finally, the
conclusions will be discussed in Section 6.

2. Background and Related Work

In this part, we will introduce the 0-1 knapsack problem,
and then we will present the related research work of the
algorithms used to solve the knapsack problem and the
comparisons done to demonstrate the differences between
them. and finally the 0-1 knapsack applications.

2.1 0/1 Knapsack problem (0/1 KP)

The first appears of knapsack problem was in 1957, in two
publications. The first was a paper by George Dantzig
(1957); He is a creator of the field of Operations Research
and a developer of linear programming. He demonstrated
that the persistent of the KP, The second paper is
flawlessly maximized by selecting items by bang-for-buck.
[4]
KP is a well-known optimization problem, which has
restriction of the value either 0 (leave it) or 1 (take it), for
a given collection of items, where each has a weight and a
value, that to determine the items to be included in a sets,
then the total cost is less or equal to a given capacity and
the total profit is as max as possible. Obviously, the items
are indivisible, accordingly the problem is been called “0-
1 Knapsack Problem”, that because you can't derive, that
mean take all value of the item or leave it.

2.2 Greedy algorithm and how to solve the problem

A greedy algorithm is a straight forward design technique,
which can be used in much kind of problems. Mainly, a
greedy algorithm is used to make a greedy decision, which
leads to a feasible solution that is maybe an optimal
solution. Clearly, a greedy algorithm can be applied on
problems those have ‘N’ number of inputs and we have to
choose a subset of these input values those satisfy some
preconditions. While, this selection is been taken as a
greedy decision which is hopefully leads to an optimal
solution from the inputs list. Where, the next input will be
chosen if it is the most input that satisfies the
preconditions with minimizes or maximizes the value
needed in the preconditions [5, 17].
 KP can be solved by many algorithms like Greedy
algorithm by select the option that look like the best at the
moment and its trust the local optimal solution will lead
to a global optimal solution[17], Greedy are used for
optimization problems. Its typically use some heuristic
knowledge to create a pool of sub optimal that hope
converges to an optimum solution [6].

2.3 Dynamic programming algorithm and how to
solve the problem

Dynamic algorithm is an algorithm design method, which
can be used, when the problem breaks down into simpler
sub problems; it solves problems that display the
properties of overlapping sub problems. In general, to
solve a problem, it’s solved each sub problems
individually, then join all of the sub solutions to get an
optimal solution [13, 15].
The dynamic algorithm solve each sub problem
individually, once the solution to a given sub problem has
been computed, it will be stored in the memory, since the
next time the same solution is needed, it's simply looked
up. Distinctly, a Dynamic algorithm guarantees an optimal
solution.
Here are two key traits that the problem must have all
together for dynamic programming to apply: the first one
is an overlapping sub problems and the second is an
optimal substructure. The Overlapping sub problems is
mean: the space of sub problems should be small, that is
any recursive algorithm solving the problem should solve
the same sub problems recursively [18], rather than
creating new sub problems, and the optimal substructures
mean: the solution to a given optimization problem can be
acquired by the mix of optimal solutions to its sub
problems.
Dynamic Programming algorithm was created by Richard
Bellman which whose the term dynamic programming in
1957 [12], the authors were solves problems by
consolidating the solutions for problems that contain sub-
problems but notice that there are a distinction between
Dynamic programming and Divide &Conquer, Divide &
Conquer are solving sub-sub-problems many times but DP
it solve the each sub - problem one time and store the
solution's in a table [6].
Also [7] has solve the problem by two new algorithms
recently proved to outperform all previous methods for the
exact solution of the 0-1 Knapsack Problem by Dynamic
Programming and Strong Bounds algorithms.

2.4 Branch & bound algorithm

In fact, Branch & bound is a well-known technique that is
mainly used to solve the problem which categorized as
optimization problems [14]. Actually, it is an
improvement over exhaustive search that because B&B
builds applicant solutions as one part at a time and
assesses the built arrangements as unmistakable parts.
From other side, in the event that there are no potential
estimations of the remaining parts, which can give the
solution, as a result, the remaining parts will not be
created at all. Despite the fact that, in the worst case still
has an exponential complexity, but it is may use to solve a
large cases of difficult mixed problems. In [19] they use A

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 3

Branch & Bound algorithm for the KP by exhibited which
can acquire either optimal or inexact solutions. A few
attributes of the algorithm are talked about and
computational experience is introduced. And the B& B is
a credulous way to deal the 0–1 KP is to consider thusly
all the 2n possible solutions X, figuring the benefit every
time and monitoring the most elevated benefit discovered
and the relating vector.[9]

2.5 Genetic Algorithm

In [3] they utilize the Genetic Algorithms which is
computer algorithm that look for good solution for a
problem from among huge arrangements of possible
solutions. Also they proposed and created in the 1960s by
John Holland, his understudies, and his colleagues at the
University of Michigan. These computational standards
were enlivened by the mechanics of characteristic
advancement, including survival of the fittest, generation,
and transformation. These mechanics are appropriate to
determine an assortment of commonsense problems,
including computational problems, in numerous fields [15,
16]. A few utilization's of Genetic Algorithms are
streamlining, economics, machine learning, and social
framework.

2.6 0/1 Knapsack applications

There are many applications for 0-1 Knapsack like
cryptography for public key encryption. Different spaces
where the problem shows up are: budget control, network
flow, journals for a library A good overview of the early
applications is located in [2].

3. Algorithms for Solving 0/1 knapsack
problem

In this section the Greedy, dynamic programming, B&B
and Genetic algorithms will be presented.

3.1Greedy Algorithm

Greedy Algorithm for solving 0-1 knapsack problem is
calculate the ratio, where a ratio between the inputs values
and the inputs weights will be calculated and according to
this value the next input will be chosen to fill the knapsack
in a proper way. A greedy algorithm mainly tests all
inputs according to some preconditions then arranges
them in a proper order to maximize or minimize the value
of the required solution. Next, it starts to choose the most
appropriate input that will lead to an optimal solution.
(See Figure 1). The following is an illustration of the
greedy programming for 0/1 knapsack problem supported
with an example that applied the algorithm on knapsack

the solution of knapsack problem is achieved according to
the following steps:
Step 1 calculates the ratio for n inputs between weight and
Benefit as (Benefit /weight).
Step 2 arranges the items in a non-diminishing order as
per of the ratio value.
Step 3 picks the biggest ratio of the item that its weight is
not exactly or equivalent to the W (knapsack limit) to add
it to the arrangement vector.
Where n the number of input items, W the knapsack
capacity, Weight [] is an array holds the weights of the
items, Benefit [] holds the benefit values of the items,
Ratio [] holds the value comes from dividing the items
value by it weight and finally, an array that holds the
solution vector. As an example of how the array Weight []
and Benefit [] is constructed shown in Figure 1, will make
the algorithm running clearer, considering a 4 input items
and the knapsack capacity is 50.

1) Computing the Ratio[i] of all items (lines 5-7 in
Figure 1) by dividing the Benefit[i] by the weight[i].

2) Sorting the items according to the Ratio value is
done in (lines 8-13).

3) Pick the largest value of the ratio that its Weight[]
does not exceed the knapsack capacity (50 in this
example)

4) Experience every one of the items and check which
item can be fit in the knapsack to get the most
extreme benefit but the total weights are not exactly
or equivalent to the knapsack limit.

Based on an example of knapsack, greedy algorithm
Solution steps will be as follows:
1) Calculate the ratio between the items values and

weights by dividing the item’s value by the item’s
weight (Table 2).

2) Arranges the items in a non-diminishing order
according to their ratio (Table 3) .

3) Pick up the largest value, which stands at the top of the
array. Thus, the array will be as Table 4.

Now, the first item will be chosen which has a weight as 3
which is less than the available knapsack capacity 5, so
still there is another chance to get more items. In the next
iteration, the capacity will be 2 instead of 5 because the
first item filled it with its weight which equals 3.
4) Another time the first item which has the largest ratio

and its weight is equal to the capacity reminds from
the first iteration will be chosen and added to the
knapsack. Then, the knapsack is full with a value
equals to 9.

5) Finally,
a) The knapsack will be filled by two items
b) The knapsack value is 9
c) The array will hold the rest of the items as Table

5.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 4

Table 2: Ratio between the items
Item.NO(𝒊𝒊) Weight of (𝒊𝒊) Value of (𝒊𝒊) Value(i)

1 2 3 1
2 3 7 2
3 4 2 0
4 5 9 1

Table 3: Arranges the items
Item.NO(𝒊𝒊) Weight of (𝒊𝒊) Value of (𝒊𝒊) Value(i)

1 3 7 2
2 2 3 1
3 5 9 1
4 4 2 0

Table 4: Pick up largest value
Item.NO(𝒊𝒊) Weight of (𝒊𝒊) Value of (𝒊𝒊) Value(i)

1 2 3 1
2 5 9 1
3 4 2 0

Table 5: rest of the items
Item.NO(𝒊𝒊) Weight of (𝒊𝒊) Value of (𝒊𝒊) Value(i)

2 5 9 1
3 4 2 0

3.2 Dynamic programming algorithm

The DB is an algorithm for solving the problems that
categorize as optimization problems, the main idea is to
calculate the solutions to the sub-problems for one time
and store the solutions in a table, so that it can be reused
in future like: (See Figure 2)

1) Characterize the structure of an optimal solution by

derive the problem into small problems, and look
about a connection between the structure of the
optimal solution of the first problem(Original) and the
solutions of the smaller problems.

2) Define the optimal solution Recursively by express the
solution of the first (original) problem in terms of
optimal solutions for smaller problems.

3) Calculate the value of an optimal solution in a bottom-
up approach by using a table.

4) Construct an optimal solution from computed
information.

As an example about how DB solves the KP, suppose
there is an item with weight and value as Table 6 and with
capacity (W) of 10.DP algorithm will generate a matrix
that holds all solutions as table 7. And the final output it
will be V (4, 10) = 90.

Table 6: Knapsack Example in DP
Item 01 02 03 04
Profit 10 40 30 50
Weight 5 4 6 3

Table 7: Dynamic Programming Matrix
V(i,w) 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 10 10 10 10 10 10
2 0 0 0 0 40 40 40 40 40 50 50
3 0 0 0 0 40 40 40 40 40 50 70
4 0 0 0 50 50 50 50 90 90 90 90

Fig. 1 Greedy Algorithm for 0/1 KP

3.3Branch & Bound algorithm

This section presents the branch & bound Algorithm for
solving the 0-1 knapsack problem .branch & bound is a
technique that is used to solve the problems that
categorized as optimization problems.

Greedy algorithm for solving knapsack problem (Weight []
and Benefit [])
Input:
1. Array for Weight, which holds the weight of all items.
2. Array for Benefit, which holds the Benefit of all items.
3. Capacity.
Output: Array Solution, which holds the items that its
weight does not surpass the knapsack and it had the
maximum amount of value

A. Calculate the ratio[1…n]
1. n is the number of input items;
2. W is the knapsack capacity;
3. Weight [i] holds the weight of ith item;
4. Benefit [i] holds the Benefit of the ith item;
5. Calculate the Ratio value for each item :
6. for all input items do
7. Ratio[i] = Benefit[i]/weight[i];

B. Sort the items in a non-decreasing order according
the items ratio value

8. 𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖 = 𝑛𝑛 − 2; 𝑖𝑖 >= 0; 𝑖𝑖 − −)
9. 𝑓𝑓𝑓𝑓𝑓𝑓(𝑗𝑗 = 0; 𝑗𝑗 <= 𝑖𝑖; 𝑗𝑗 + +)
10. 𝑖𝑖𝑓𝑓(𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝑓𝑓𝑖𝑖𝐵𝐵[𝑗𝑗] < 𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝑓𝑓𝑖𝑖𝐵𝐵[𝑗𝑗 + 1])
11. Swap (Benefit [j+1] , Benefit [j]) ;
12. Swap (Weight[j+1] , Weight [j]) ;
13. Swap (Ratio[j+1] , Ratio [j]) ;

C. Knapsack algorithm (find the Knapsack solution)
14. 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1; 𝑖𝑖 < 𝑛𝑛; 𝑖𝑖 + +)
15. 𝑖𝑖𝑓𝑓 (𝑊𝑊𝐵𝐵𝑖𝑖𝑊𝑊ℎ𝐵𝐵[𝑖𝑖] < 𝑊𝑊) 𝐵𝐵ℎ𝐵𝐵𝑛𝑛
16. 𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛𝐵𝐵 = 𝑊𝑊𝐵𝐵𝑖𝑖𝑊𝑊ℎ𝐵𝐵[𝑖𝑖] ;
17. 𝑎𝑎𝑎𝑎𝑚𝑚_𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝐵𝐵 = 𝑎𝑎𝑎𝑎𝑚𝑚_𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝐵𝐵 + 𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝑓𝑓𝑖𝑖𝐵𝐵[𝑖𝑖];
18. 𝑆𝑆𝑓𝑓𝑣𝑣𝑎𝑎𝐵𝐵𝑖𝑖𝑓𝑓𝑛𝑛[𝑖𝑖] = 𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛𝐵𝐵;
19. else
20. 𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛𝐵𝐵 = 𝑘𝑘𝑛𝑛𝑎𝑎𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘𝑘𝑘;
21. 𝑘𝑘𝑓𝑓𝑣𝑣𝑎𝑎𝐵𝐵𝑖𝑖𝑓𝑓𝑛𝑛[𝑗𝑗 + +] = 𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛𝐵𝐵 ;
22. break;
23. 𝑊𝑊 = 𝑊𝑊−𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛𝐵𝐵 ;

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 5

Dynamic Programing for solving knapsack problem
Input:
1. Array of Value (v).
2. Array of Weights (w).
3. Number of items(n)
4. capacity(W)

DP(w.v.W){
for i = 0 to W do
 m[0,i] = 0
end for

for i = 1 to n do
 for j = 0 to W do
 if w[i] ≤ j then
 m[i,j] = max (m[i-1,j],m[i-1,j-w[i]] + v[i])
 else
 m[i,j] = m[i-1,j]
 end if
 end for
end for
}
Return Max Value

Fig. 2 Dynamic Programming for 0/1 KP.

Branch & Bound Pseudo code
Input:
Array of Weights and array of values
Output:
Max Value
Note: Items are sorted according to value/weight ratios
Queue Q
Node Type: current, temporary
*Create the root
Q.enqueue(root)
Max Value = value
While (Q is not empty)
 current = PQ.GetMax()
 if (current >MaxValue)
 Then Set the left child of the current node to include
the next item8
If child.Left value is greater than MaxValue
MaxValue = Value of the Left Child
End if
If child.left bound better than MaxValue
Q.enqueue(Left Child)
End if
If child.Right bound better than MaxValue
Q.enqueue(Right Child)
End if
Return Best solution

Fig. 3 Branch and Bound Algorithm for 0/1 KP.

It is a changeover comprehensive search, on the grounds
that not at all like it, branch & bound builds hopeful
arrangements one part at a time and assesses the
somewhat developed solutions. On the off chance that no
potential estimations of the remaining parts can prompt a
solution [8], the remaining segments are not created. This
methodology makes it conceivable to settle some huge
occasions of troublesome difficult combinatorial problems,
however, in the most pessimistic scenario; regardless it
has an exponential complexity.
B & B is based on state space tree. The state space tree is a
root of the tree where every level represent to a decision in
the solution space that relies on the upper level and any
conceivable solution is represented to by a few ways
beginning at the root and finishing with a leaf.
The root stayed in level 0 and represents the state where
no incomplete solution has been made. A leaf has no
youngsters and represents the state where all decisions
making up an answer have been made.
The most well-known way, branch & bound uses to cross
the state space tree, are best first traversal. This quits
looking in a specific sub-tree when it is clear that to seek
further down is pointless and it utilizes a customary line.
In the state space tree, a branch is heading off to one side
demonstrates the consideration of the following thing
while a branch to the privilege shows its avoidance.
In every node of the tree, we were record the
accompanying data:
Level ,cum Value , cum Weight, node Bound and the
upper bound on the estimation of any subset by including
the aggregate estimation of the items officially chose in
the subset, v, and the result of the remaining limit of the
knapsack and the best per unit result among the remaining
items, which is vi+1/wi+1.(See Figure 3)

Upper Bound = v + (vi +1 / wi+1)*(C – w)

In the worst scenario, B&B algorithm will create every
moderate stage and all leaves. Hence, the tree will be
finished and will have 2 n-1 – 1 node.

Example:
The operation of the algorithm is illustrated with the
following example. Consider a problem with seven items
whose weight and values are given as table 8.
The total allowable weight in the load W = 100. A
preliminary test reveals that the problem possesses a
nonempty feasible solution and is not trivial, and ∑
wi> 100. We compute the ratios vi/wi and reorder the
items. They are given below with the new indexing as
Table 9.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 6

Table 8: Knapsack Example in B&B
Item No Weight Value

1 40 40
2 50 60
3 30 10
4 10 10
5 10 3
6 40 20
7 30 60

Table 9: compute the ratios with new Indexing
New Index Item No Weight Value Ratio

1 7 30 60 2
2 2 50 60 6/5
3 1 40 40 1
4 4 10 10 1
5 6 40 20 ½
6 3 30 10 1/3
7 5 10 3 3/10

Fig. 4 Branch and Bound Tree for 0/1 KP.

The first node shown in Figure 2 is that including all
possible solutions. The first branching uses index 1 as the
first pivot and at node 2 where this index is excluded from
the solution the upper bound is computed by:
B (2) = v2 + v3 + v4 = 110
While at node 3 where this index is included, we obtain
B (3) = v1 + v2 + ½ v3 = 140
As B (3) is the maximum upper bound, the next branching
is made at node 3 and index 2 is selected as the pivot. The

results of the repeated application of the algorithm are
given in Figure 3. The optimum is reached at node 15. The
total value being 133 and is attained by loading items 7, 2,
4, and 5. (See Figure 4)

3.4 Genetic Algorithms

Genetic Algorithms which is computer algorithm that
looks for good solution for a problem from among huge
arrangements of possible solutions. They were proposed
and developed in the 1960s by John Holland, his students,
and his colleagues at the University of Michigan. These
computational paradigms were inspired by the mechanics
of natural evolution, including survival of the fittest,
reproduction, and mutation. These mechanics are well
suited to resolve a variety of practical problems, including
computational problems, in many fields. Some
applications of GAs are optimization, automatic
programming, machine learning, economics, immune
systems, population genetic, and social system [1].
The main idea of Gas an arrangement of applicant
solutions (chromosomes) called population. A new
population is generated from an old population in any
expectation of getting a better Solution. Solutions which
were selected to form new solutions (offspring) are chosen
according to their fitness. The more suitable the solutions
are the greater chances they need to replicate. This
procedure is rehashed until some condition is fulfilled [19].
Most GAs methods are based on the following elements,
populations of chromosomes, selection according to
fitness, crossover to produce new offspring, and random
mutation of new offspring.
The function that introduces the array chromosomes has
an O (N). Crossover, fitness and mutation functions have
also O (N). The two selection functions and the function
that checks for the terminating condition do not depend on
N and they have constant times of running O (1).and the
aggregate complexity of the program is O(N).
Example:
Utilize an information structure, called cell, with two
fields benefit and volume to represent all items. At that
point we utilize an array of sort cell to store all items in it,
which looks as table 10.
A chromosome can be represented in the knapsack by
(‘1’) or not (‘0’). For instance, look to table 11, that
Indicates the first and fourth item are included in the
knapsack.
At that point we ascertain the fitness of every
chromosome by summing up the profit of the things that
are incorporated into the knapsack, while ensuring that the
limit of the knapsack is not surpassed. On the off chance
that the volume of the chromosome is more noteworthy
than the limit of the backpack then one of the bits in the
chromosome whose worth is "1" is transformed and the
chromosome is checked once more.

ᴓ

1
1

1,2
1,2

1,2,3 1,2,3

1,2,3
,4

1,2,3
,4

1,2,3
,4,5

1,2,3
,4,5

1,2,3,
4,5,6

1,2,3,
4,5,6

1,2,3,
4,5,6,

7

1,2,3,
4,5,6,

7

Node 1
B(1)=0 Node 2

B(2)=110

Node 3
B(3)=140

Node 4
B(4)=120

Node 15
B(15)=133
Optimal

Node 14
B(14)=130

Node 12
B(12)=133

Node 13
B(13)=-99

Node 10
B(2)=110

Node 8
B(8)=130

Node 6
B(6)=135

Node 9
B(9)=135

Node 11
B(11)=-99

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 7

For the usage of the group selection method, they utilize
another array indexes size (table 12), where we put the
indexes of the elements in the array fitness Size.
Now, Sort the array in slipping request as indicated by the
fitness of the relating elements in the array fitness (table13).
Thus, the indexes of the chromosomes with grater fitness
values will be at the beginning of the array indexes, and the
ones with little fitness will be towards the end of the array.
Now, divide the array into four groups:

1) 0 – 2 (0 ………. Size / 4)
2) 3 – 5 (Size / 4 ……. Size / 2)
3) 6 – 8 (Size / 2 ……… 3* Size / 4)
4) 9 – 11 (3* Size / 4 …… Size)

Arbitrarily pick an item from the 1st group with 50%, from
the 2ed group with 30%, from the 3ed group gathering with
15%, and from the last group gathering with 5%. In this

way, the fitter a chromosome is the more risk it must be
decided for a guardian in the next generation as table 14.

Table 10: Sort cell to store all items
Items 0 1 2 3
Benefit|vol 20 | 30 5 | 10 10 | 20 40 | 50

Table 11: Chromosome
items 0 1 2 3
chromosome 1 0 0 1

4. Analytical Modeling

The analytical study will be presented in this section,

Table 12: Selection Method
items 0 1 2 3 4 5 6 7 8 9 10 11
Chr

fitness
40 20 5 1 9 7 38 27 16 19 11 3

indexes 0 1 2 3 4 5 6 7 8 9 10 11

Table 13: Fitness Array
items 0 1 2 3 4 5 6 7 8 9 10 11
indexes 0 6 7 1 9 8 10 4 5 2 11 3

Table 14: Generation Method

Population Size
Group Selection Method

No of Gen Max fit found Items chosen

100 39 3825 1,2,3,4,5,7,9,12

200 51 4310 1,2,3,4,5,6,7,8,11

300 53 4315 1,2,3,4,5,6,7,8,10

400 49 4320 1,2,3,4,5,6,7,8,9

500 65 4320 1,2,3,4,5,6,7,8,9

750 45 4320 1,2,3,4,5,6,7,8,9

1000 53 4320 1,2,3,4,5,6,7,8,9

the most vital metrics to evaluate the efficiency of The
greedy, dynamic programming, branch and bound, and
Genetic algorithms for solving the 0-1 knapsack problem,
which will be used to show their effect on the 0/1
knapsack problem. These analyses include the following
parameters: execution time and their efficiency to get the
max benefit into the knapsack.
Execution time:
 The execution time metric measures to what extent do the
algorithm take to be finished. Time complexity analyses to
get an estimated of the time required in the worst case to
solve the 0/1 knapsack problem as a function of input data

size. The execution time assumes a huge part in enhancing
the systems performance. In this manner, the target of any
algorithm solving KP is to perform productive efficient
solution in the minimum possible time.

1) Greedy algorithm
The complexity time for greedy algorithm execution time
will be as:
1. Sorting by Merge sort algorithm is O(NlogN)
2. ∑ 1 = n − 0 n

i=0 is O(N)
From 1 and 2, the total complexity is O (NlogN) + O(n)
which approximately equal O(NlogN).

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 8

2) Dynamic programming algorithm
The worst case time complexity of the dynamic
programming algorithm used to solve the 0-1 KP is O
(W ∗ n) .

3) Branch and bound algorithm
In the worst case, the B&B algorithm will generate all
intermediate stages and all leaves. Therefore, the tree will
be complete then the Time complexity = O (2n).

4) Genetic algorithm
The function for introduces the array chromosomes has
an O (N). Crossover, fitness and mutation functions have
O (N). The two selection functions have O (1).The
function that checks for the terminating condition has O
(1). Then the total complexity of the program is O (N).
Table 15 shows the time complexity for the four
algorithms.

Table 15: Time Complexity
Metric Greedy DP B&B Genetic

Ex.Time O(NlogN) O(W*N) O(2n) O(N)

4. Experimental Results

 The version of all algorithms presented in Section 3
(Greedy, dynamic programming, Branch and bound and
Genetic Algorithm) has been coded in C++, We are test
all of them using different array size but with the same
Capacity size on a Core i5 1.70 GHz and 4GB Ram laptop
and, we are run each Algorithms 40 time and we get the
average time, we read the data set from files that we are
generate with values between 1-1000 with deferent sizes,
but at the beginning we test each of them in small size
array to check that its work fine and gives a correct results.
The experimental time that appears in table 16 is the
execution time for Greedy, DP, B&B and Genetic
Algorithm with different size where K mean thousand
which 100K is mean 100,000 items.
Since the Branch and bound O(2n) then its need more
space and in the device that we are test on, it does not
work for 100000 array size so we test it just to the max
number(60000) and Capacity size(100) that what we can
and the experimental time for the four algorithms is shown
in table 17.
From the result we can see that all of the experimental
time for each algorithm are expected depend on the
analytical model ,we can see that the minimal time is for
genetic algorithm then Greedy, DB and B&B respectively.
The dynamic programming algorithm are always give the
optimal result but the greedy and genetic algorithms are
given the local optimal result, for that we are implement
each of them on the same data set to compare which one
that give the best local optimal result.
 From the two tables (18 and 19) we can see that the
genetic algorithm gives better local optimal results than
the greedy algorithm not always but as an the average we

can notify that the genetic local result is best than the
greedy local result.

Table 16: Experimental Time
Size Greedy DP B&B Genetic
100K 0.8623 7.7177 NA 0.7325
200K 1.7758 13.9441 NA 1.4669
200K 2.8489 21.0783 NA 2.1652
400K 3.8071 28.1098 NA 2.8336
500K 4.9852 34.5011 NA 3.6795

Table 17: Experimental Time
Size Greedy DP B&B Genetic

20000 0.1325 0.2513 1.365 0.1683
30000 0.1687 0.3718 3.057 0.2251
40000 0.2041 0.4893 7.725 0.3112
50000 0.2549 0.6363 18.418 0.3552
60000 0.2943 0.7738 32.131 0.4316

 Fig. 5 . Execution time for Greedy,DP and Genetic Algos

 Fig. 6 . Execution time for Greedy,DP and Genetic Algos

0
5

10
15
20
25
30
35
40

Greedy

dynamic
programm
ing

Genetic

0

5

10

15

20

25

30

35

20K 30K 40K 50K 60K

Greedy

dynamic
programmi
ng

Branch and
bound

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 9

5. Conclusion

The greedy, dynamic programming, branch and bound and
genetic algorithms have been presented. The performed
analysis and the conducted comparisons have been
presented, and compared to the experiment results
obtained from applying these algorithms on 0/1 knapsack
problem.

Table 18: Greedy algorithm V.s Genetic algorithm
Data Size Greedy Genetic Dynamic programming

100 224 239 239
200 328 328 334
300 417 416 417
400 477 477 477
500 510 510 510
600 529 544 544
700 555 555 563
800 555 555 563
900 572 572 581
1000 572 572 581

Table 19: Greedy algorithm V.s Genetic algorithm
Data Size Greedy Genetic Dynamic programming

100 379 387 387
200 496 510 512
300 682 682 682
400 761 771 771
500 805 816 816
600 881 887 887
700 952 945 952
800 952 952 952
900 1002 1002 1002
1000 1009 1009 1015

The results demonstrate the effectiveness of the
algorithms, in terms of execution time. We can conclude
that the branch and bound and dynamic programming
algorithms outperform the greedy and genetic algorithm in
term of the total value it generated.
We used both, the greedy and the genetic algorithms in
finding a local optimal result. From our experiments, it
can be shown that genetic algorithms provide better results
in terms of how close the results are to the real exact ones.
This is mainly because genetic algorithms allow for
diversity in generating alternative solutions and they
measure the fitness of these solutions at each step. In
general, two factors affect the genetic algorithms accuracy.
First, the possibility of representing the problem in a
manner suitable for genetic algorithms evaluation and
second the accuracy of the fitness function designed for
the problem. In our research, we study the 0-1 Knapsack

problem, which can be easily mapped to the genetic
algorithm context. Also, the better parameters used (such
as the number of chromosomes, crossover, mutation, and
other population characteristics etc…), a more accurate
output can be assumed.
The worst execution time is suffered by the branch and
bound algorithm, since its complexity grows exponentially.
Also if we increase the capacity of knapsack over the
input items the execution time needed by dynamic greater
than greedy algorithm.
The best execution time is suffered by genetic and Greedy
algorithms since its complexity grows is O (n).

References
[1] S. Mohanty, R. Satapathy, “An evolutionary multiobjective

genetic algorithm to solve 0/1 Knapsack Problem,” IEEE
Transl. Beijing, vol. 2, pp. 397–399, August 2009.

[2] M. Babaiof, M. Babaiof, D. Kempe “A Knapsack Secretary
Problem with Applications,” Springer, NJ. USA, vol. 7, pp.
16–28, August 2007.

[3] M. Hristakeva, D. Shrestha, “Solving the 0-1 Knapsack
Problem with Genetic Algorithms,” IEEE Transl. Beijing,
Science & Math Undergraduate Research
Symposium, Indianola, Iowa, Simpson College June 2004.

[4] J. Bartholdi, “The Knapsack Problem,” Springer. Ch2,
Georgia Institute of Technology, 2010.

[5] A. Sleit, S. Abusharkh, R. Etoom, Y. Khero “An
enhanced semi-blind DWT–SVD-based watermarking
technique for digital images,” The Imaging Science Journal,
vol. 60, pp. 29–38, Novemper 2013.

[6] M. Hristakeva, D. Shrestha, “Different Approaches to Solve
the 0/1 Knapsack Problem,” Proc. of 38th Midwest
Instruction and Computing Symposium, Apr. 2005.

[7] S. Martello, D. Pisinger, P. Toth “Dynamic Programming
and Strong Bounds for the 0-1 Knapsack Problem,”
Management Science, vol. 45, pp. 414–424, 1999.

[8] A. Sleit, F. Fotouhi, S. Hasan, “The SB+-Tree: An Efficient
Index Structure for Joining Spatial Relations,” International
Journal of Geographical Information Science., vol, 2pp.
163–182, 1997.

[9] M.Lagoudakis, “The 0–1 knapsack problem—an
introductory survey citeseer.nj.nec.com/151553.html, 1996.

[10] D. Pisinger,”algorithms for knapsack probmem” University
of Copenhagen, P.h.D thesis, 1995.

[11] S. Martello, P. Toth, “Upper bound and algorithms for
hard 0-1 knapsack problems,” Oper. Res, vol. 45, pp. 768–
778, 1997.

[12] A. Kleywegt, D.Papastavrou, “The Dynamic and Stochastic
knapsack Problem,” Opns. Res, pp. 17–35, 1998.

[13] Bellman, R.E. & Dreyfus, “Applied dynamic programming,”
Princeton University Press, pp. 27–31, August 1962.

[14] E. Ignall, L. Schrage, “Application of the Branch and
Bound Techniques to Some Flow Shop Scheduling
Problems,” Operations Research, vol.13, pp. 400–412, 1965.

[15] B. Hammo, A. Sleit, R. Etoom, “effectiveness of query
expansion in searching the holy quran,” The Second
International Conference on Arabic Language Processing
CITALA'07, Rabat, Morocco, pp. 1-10. 2007.

[16] M. Melanie, “An Introduction to Genetic Algorithms,”
Massachusetts, MIT Press, 1999.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sachi%20Nandan%20Mohanty.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rabinarayan%20Satapathy.QT.&newsearch=true
http://dl.acm.org/citation.cfm?id=1459740&CFID=776195139&CFTOKEN=71789765
https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwivx4nnycLJAhVp1XIKHUQXALEQFggcMAE&url=http%3A%2F%2Fwww.springer.com%2Fcda%2Fcontent%2Fdocument%2Fcda_downloaddocument%2F9780387736983-c1.pdf%3FSGWID%3D0-0-45-580604-p173750219&usg=AFQjCNE1mAjnAcS47EPr2RSNF8qAGQLCBQ&sig2=0tKfTvQuzmprL8a1wWhRiA&bvm=bv.108538919,d.bGQ&cad=rja
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sachi%20Nandan%20Mohanty.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rabinarayan%20Satapathy.QT.&newsearch=true
http://www.tandfonline.com/author/Khero%2C+Y
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sachi%20Nandan%20Mohanty.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sachi%20Nandan%20Mohanty.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rabinarayan%20Satapathy.QT.&newsearch=true

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 10

[17] G. Zäpfel, “The Knapsack Problem and Straightforward
Optimization Methods,” Springer. Chapter 2, Georgia
Institute of Technology, 2010.

[18] A.Sleit, M. Al-Akhras, I. Juma, M. Alian“Applying
Ordinal Association Rules for Cleansing Data with Missing
Values,” Journal of American Science. Marsland Press, pp.
52–62, 2009.

[19] P.KOLESAR, “A branch and bound algorithm for the
knapsack problem. Manage,” Sci, pp. 723-735, May 1967.

https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwivx4nnycLJAhVp1XIKHUQXALEQFggcMAE&url=http%3A%2F%2Fwww.springer.com%2Fcda%2Fcontent%2Fdocument%2Fcda_downloaddocument%2F9780387736983-c1.pdf%3FSGWID%3D0-0-45-580604-p173750219&usg=AFQjCNE1mAjnAcS47EPr2RSNF8qAGQLCBQ&sig2=0tKfTvQuzmprL8a1wWhRiA&bvm=bv.108538919,d.bGQ&cad=rja
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sachi%20Nandan%20Mohanty.QT.&newsearch=true

	Items
	Profit
	Weight
	Value(i)
	Value of (𝒊)
	Weight of (𝒊)
	Item.NO(𝒊)
	Value(i)
	Value of (𝒊)
	Weight of (𝒊)
	Item.NO(𝒊)
	Value(i)
	Value of (𝒊)
	Weight of (𝒊)
	Item.NO(𝒊)
	Value of (𝒊)
	Weight of (𝒊)
	Item.NO(𝒊)
	Value(i)
	Value
	Weight
	Item No
	Ratio
	Value
	Weight
	Item No
	New Index
	1) Greedy algorithm
	2) Dynamic programming algorithm
	3) Branch and bound algorithm
	4) Genetic algorithm

